Transient Dynamics Simulation of Airflow in a CT-Scanned Human Airway Tree: More or Fewer Terminal Bronchi?

نویسندگان

  • Shouliang Qi
  • Baihua Zhang
  • Yueyang Teng
  • Jianhua Li
  • Yong Yue
  • Yan Kang
  • Wei Qian
چکیده

Using computational fluid dynamics (CFD) method, the feasibility of simulating transient airflow in a CT-based airway tree with more than 100 outlets for a whole respiratory period is studied, and the influence of truncations of terminal bronchi on CFD characteristics is investigated. After an airway model with 122 outlets is extracted from CT images, the transient airflow is simulated. Spatial and temporal variations of flow velocity, wall pressure, and wall shear stress are presented; the flow pattern and lobar distribution of air are gotten as well. All results are compared with those of a truncated model with 22 outlets. It is found that the flow pattern shows lobar heterogeneity that the near-wall air in the trachea is inhaled into the upper lobe while the center flow enters the other lobes, and the lobar distribution of air is significantly correlated with the outlet area ratio. The truncation decreases airflow to right and left upper lobes and increases the deviation of airflow distributions between inspiration and expiration. Simulating the transient airflow in an airway tree model with 122 bronchi using CFD is feasible. The model with more terminal bronchi decreases the difference between the lobar distributions at inspiration and at expiration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude

At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...

متن کامل

CFD Simulation of Airflow in a 17-Generation Digital Reference Model of the Human Bronchial Tree

______________________________________________________________________________ Abstract Computational fluid dynamics (CFD) studies of airflow in a digital reference model of the 17-generation airway (bronchial tree) were accomplished using the FLUENT® computational code. The computational mesh was based on the anatomical graph data of a digital reference model by Schmidt et al. (2004) derived f...

متن کامل

Understanding the contribution of native tracheobronchial structure to lung function: CT assessment of airway morphology in never smokers

BACKGROUND Computed tomographic (CT) airway lumen narrowing is associated with lower lung function. Although volumetric CT measures of airways (wall volume [WV] and lumen volume [LV]) compared to cross sectional measures can more accurately reflect bronchial morphology, data of their use in never smokers is scarce. We hypothesize that native tracheobronchial tree morphology as assessed by volum...

متن کامل

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

Micro Particles Transport and Deposition in Realistic Geometry of Human Upper Airways

Realistic geometry of human upper airways from mouth to the end of trachea was reconstructed by implementing the CT-Scan images of a male subject.   A computational model for analyzing the airflow in the airways was developed and several simulations were performed.  To capture the anisotropy of the inhaled airflow in the upper airways, the Reynolds stress transport model of turbulence was used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017